If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6=2v^2
We move all terms to the left:
0.6-(2v^2)=0
a = -2; b = 0; c = +0.6;
Δ = b2-4ac
Δ = 02-4·(-2)·0.6
Δ = 4.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{4.8}}{2*-2}=\frac{0-\sqrt{4.8}}{-4} =-\frac{\sqrt{}}{-4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{4.8}}{2*-2}=\frac{0+\sqrt{4.8}}{-4} =\frac{\sqrt{}}{-4} $
| x^2+2+1,73=0 | | 19+2.5x=100 | | 3h+5h=8 | | 68+13+3y=180 | | 68+13+3y=141 | | 20+b=55 | | k-40=-26 | | 6b-5b=13 | | 5m=7m–6 | | 20b+b=55 | | 2×+3y=177 | | 9c=8c+8 | | 3(6-f-4=3f-4 | | 7b*0.5=22 | | 5v-4v=10 | | p+295=378 | | k/5=-9 | | 68+x=141 | | X*2+3x=51 | | 9+12x=51 | | 68+3y=180 | | 4a-9;a=4 | | 68+3y=141 | | 9x-4+2x=6x-2x-3 | | x+8+45+x-3=180 | | x+8+45=180 | | 10x-8+3x+19=180 | | -5=7x+2(-3x-7) | | 6x-6+4x=14 | | x=-8(0) | | -3y=10–y | | 2x+10+44=180 |